Most Wanted Difference Sets

This page was originally created for cyclic difference sets; obviously some non-cyclic ones should be added. If you have a nomination, send it in and I'll include it.

vklambdanGroupComment
261 105 42 63[3,87] NO: James R. Hufford, 2015 M.S. Thesis, Wright State University
419 133 42 91[419] NO: Leung, Ma and Schmidt, A Multiplier Theorem, JCTA, 2014
465 145 45 100[465] gcd(v,n) = 5
1123 154 21 133[1123] NO: Leung, Ma and Schmidt, A Multiplier Theorem, JCTA, 2014
645 161 40 121[645] NO: Franklin and Sam (unpublished)
1093 169 26 143[1093]
945 177 33 144[945]NO:Tao Feng, Nonexistence of some (945,177,33)-difference sets, Ars Combinatoria, 2010
1111 186 31 155[1111]
1380 197 28 169[1380]
5859 203 7 196[5859] gcd(v,n) = 7
469 208 92 116[469]
1785 224 28 196[1785] gcd(v,n) = 7
1801 225 28 197[1801]
2291 230 23 207[2291]
639 232 84 148[639]
2869 240 20 220[2869]
2574 249 24 225[2574] gcd(v,n) = 9
2160 255 30 225[2160] gcd(v,n) = 45
1925 260 35 225[1925] gcd(v,n) = 25
1381 276 55 221[1381] NO: Leung, Ma and Schmidt, A Multiplier Theorem, JCTA, 2014
817 289 102 187[817]
781 300 115 185[781]
2304 1128 552 576[2,2,2,288]counterexample to Lander's conjecture
2304 1128 552 576[2,4,288]counterexample to Lander's conjecture
2304 1128 552 576[8,288]counterexample to Lander's conjecture
2304 1128 552 576[16,144]counterexample to Lander's conjecture
2304 1128 552 576[2,8,144]counterexample to Lander's conjecture
2304 1128 552 576[4,8,72]counterexample to Lander's conjecture
2304 1128 552 576[2,2,8,72]counterexample to Lander's conjecture
2304 1128 552 576[2,2,4,144]counterexample to Lander's conjecture
2304 1128 552 576[4,4,144]counterexample to Lander's conjecture
3439 1719 859 860[3439]cyclic Hadamard difference set
4355 2177 1088 1089[4355]cyclic Hadamard difference set
8591 4295 2147 2148[8591]cyclic Hadamard difference set
8835 4417 2208 2209[8835]cyclic Hadamard difference set
9135 4567 2283 2284[9135]cyclic Hadamard difference set
9215 4607 2303 2304[9215]cyclic Hadamard difference set
9423 4711 2355 2356[9423]cyclic Hadamard difference set